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Control systems with distributed parameters, described by partial differential equations, solvable with 

respect to the first or second time derivative, are considered. The controls on the right-hand sides of the 

equations are assumed to be bounded in absolute magnitude. A control method is proposed which brings 

the controlled system into the null state in a finite time. The proposed approach is based on decomposing 

the system and applying the time-optimal control for each mode of motion obtained by Fourier-expanding 

the solution. Estimates for the duration of the control process are obtained. Sufficient conditions for the 

problem to be solvable are given. Examples are presented. 

1. STATEMENT OF THE PROBLEM 

CONTROL systems with distributed parameters described by linear partial differential equations are 
considered. We shall consider in tandem the equation 

wr=Aw+u 

solved with respect to the first time derivative, and the equation 

(1.1) 

Wtt =Aw + u (1.2) 

solved with respect to the second derivative. 
In Eqs (1.1) and (1.2) w (x, t) is the scalar function of the n-dimensional spatial coordinate vector 

x= (Xi,. . .) x,) and time t which describes the state of the system, v is the required control, and A 
is a linear differential operator containing partial derivatives with respect to the coordinates xi, 
i=l . -7 n. The coefficients of the operator A do not depend on t, and its order ordA is assumed 
to be even and equal to 2m. 

The most important and frequently encountered examples of Eqs (1.1) and (1.2), which we shall 
have in mind in the following, are: (1) the heat-conduction equation, which is obtained from (1.1) if 
m = 1 and A = A is the Laplace operator; (2) the wave equation obtained from (1.2) with m = 1 and 
A = A; (3) the equation for the vibrations of an elastic beam or plate, obtained from (1.2) with 
m = 2, A = -A* and IZ = 1, 2, respectively. Equations (1.1) and (1.2) also describe heat-condition 
processes and vibrations in an inhomogeneous medium if 

Aw=jl & a(x); P 
[ I 

m=l 
P i 

where a(x) is a specified function describing the inhomogeneity of the medium. 
Equations (l.l), (1.2) are considered in some bounded domain of variation for the spatial 

variables XC rR and for ta0. At the boundary I of the domain Sz a homogeneous boundary 
condition of the following form should be satisfied 
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Mw=O, M=(MI,. . . ,M,), XET (1.3) 

Here Mj is a linear differential operator of order ord Mj< 2m, (j = 1, . . , m) with coefficients 
independent oft. In particular, for m = 1 the operator M is scalar and has the form 

MW =bo(x)w +bl(x)aw/ax 

where b,(x) and b,(x) are functions given on r. Condition (1.3) can, in particular, become the 
Dirichlet condition (for b0 = 1, bi = 0) or the Neumann condition (for b. = 0, bl = 1). 

The initial conditions have the form 

for Eq. (1.1) and 

w(x,o)=w~(x), xE&? (1.4) 

for Eq. (1.2). 
The constraint 

w(x, t-0 =w&), Wt(K 0) = w&x), x E a (1.5) 

lu(x, t)lG u”, xEf2, t>O (1.6) 

is imposed on the control function u, where v0 > 0 is a given constant. 
We will now formulate the second problem. 
It is required to construct a control u(x, t) satisfying condition (1.6) and such that the 

corresponding solution of (1.1) or (1.2) with boundary condition (1.3) and the corresponding initial 
condition (1.4) or (1.5) vanishes in some finite (unspecified) time T> 0. More precisely, everywhere 
in R the condition W(X, T) = 0 should be satisfied for Eq. (1.1) and w (x, T) = w,(x, T) = 0 should 
be satisfied for Eq. (1.2). Obviously, if one puts u = 0 for t 2 T, the solution remains identically equal 
to zero for t > T. 

The boundary of the domain R is assumed to be smooth; the examples also include cases with 
piecewise-smooth boundaries. Requirements on the initial functions, and the function classes to 
which the solutions of the problems belong in various cases, are considered in Sec. 9. 

Many publications have been devoted to systems with distributed parameters, for example [l-6]. 
The control method proposed below differs from the earlier ones. It enables one to construct a 
constrained control in closed form and ensures that the system is brought into a given state in a finite 
time. This method uses a decomposition of the original system into simple subsystems and in this 
sense is close in spirit to [7], where systems with a finite number of degrees of freedom were 
considered. 

2. DECOMPOSITION OF THE CONTROL PROBLEM 

The solution of the problem is based on the Fourier method. To apply it we will first consider the 
following eigenvalue problem, corresponding to the initial-boundary-value problems (1. l)-( 1.5) for 
V = 0. 

The problem is to find function q(x), xE s2 and corresponding constants A that satisfy a linear 
homogeneous equation with boundary conditions 

Acp=-hip, xEil; Mq=O, xEl- (2.1) 

It is known that under specified conditions (for self-conjugate elliptic equations and, in particular, 
for the Laplace equation, i.e. when A = A), the eigenvalue problem (2.1) has the following 
properties. 

There is a discrete denumerable spectrum of positive eigenvalues hk , which can be numbered in 
non-decreasing order: hi G A2 < . . . , with Ak+ 00 as k+ ~4. In certain cases, for example, for the 
Laplace operator A = A with Neumann conditions, there is also a zero eigenvalue A0 = 0. That case 
will also be considered. To these eigenvalues there corresponds an orthogonal system of eigenfunc- 



Bounded controls in distributed-parameter systems 709 

‘pk(x), complete in the domain a. Normalizing these functions, we obtain an orthonormal system of 
functions (PA(x), possessing the following properties 

Here ski is the Kronecker delta. The index k in (2.2) and below, unless otherwise stated, runs over 
values from 0 to CQ when there is a zero eigenvalue and from 1 to CO when there is none. Summation 
over k will also be performed over the ranges given above. 

We now use the Fourier method to separate the time (t) and space (x) dependence. Solutions of 
Eqs (1.1) and (1.2) will be sought in the form of eigen~nction expansions 

w (% f) = %k (f)tpk b-1 (2.3) 

Here the qk(t) are certain functions of time. 
The control u in (1.1) and (1.2) is also represented in the form of an expansion 

where the &%k (t) are currently unknown functions of time. 
Substituting expansions (2.3) and (2.4) into Eq. (1.1) we obtain 

24&pk = %?;rAPk +@kpk) 

(2.4) 

Here and below the dots denote time derivatives. 
We use the equations Apk = hk$)k from (2.2) together with the orthogonality of the pk. As a 

result we have the system of equations 

@k+b?k=Uk (2.5) 

Similarly, substituting expansions (2.3) and (2.4) into (1.2), we obtain 

4k + c‘&& = t(& 

Here and below the wk are the frequencies of the natural modes, given by 

(2.6) 

‘dk =$, o=oo< cd,< wzQ . . . (2.7) 
We note that a solution of the form (2.3) satisfies, by construction, the boundary condition (1.3), 

because according to (2.2) all the eigenfunctions satisfy this condition. 
We substitute solution (2.3) into the initial conditions (3.4) and (1.5) and use the orthono~ality 

of the eigenfunctions (2.2). We obtain initial conditions for problem (2.5) in the form 

q&(O) = 4; = ~wO(x)~k(x)dx (2.8) 

and for problem (2.6) in the form 

The original control problem for the partial differential equations (1.1) and (1.2) has thus been 
reduced to a control problem for linear control systems of infinite order (2.5) and (2.6). On the 
control functions &&?) Of these Systems we impose the Constraint 

i @k(f)/ Q &, t>O (2.10) 

The values of the constants uk should be chosen so that the imposed constraint (1.6) is satisfied. 
From (2.4) and (2.10) we obtain the following estimate 
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I ~(4 r)l < XUk I vk(x)I 

Consequently, to satisfy the original constraint (1.6), it is sufficient to require that for all x E R the 
inequality 

cU~l~k(X)l~u”, XEa (2.11) 

is satisfied. 
We introduce the notation 

Inequality (2.11) is clearly satisfied under the condition 

%!.Jk@‘k < u” (2.13) 

Thus, to solve the control problems for Eqs (1.1) and (1.2), it is sufficient to solve the following 
control problems for systems (2.5) and (2.6). It is required to construct the feedback controls uk(qk) 
in system (2.5) and uk(qk, q;) in system (2.6) for k = 0, 1, . . . , satisfying constraints (2.10) and 
bringing these systems to the null state [qk = 0 for (2.5) and qk = q; = 0 for (2.6)] in a finite time for 
any initial conditions of the form (2.8) or (2.9), respectively. Here the constants U, in (2.10) should 
satisfy inequality (2.11) for all X, or, which is sufficient, the stronger inequality (2.13). 

We note that as a result of applying the Fourier method we have achieved a decomposition of the 
system: each mode of motion is described by its own Eq. (2.5) or (2.6), with corresponding control 
uk. However, the constants uk in the constraints (2.10) are associated with inequalities (2.11) or 
(2.13), which is a fundamental difficulty in solving the problem. 

For each of Eqs (2.5) and (2.6) we shall construct the time-optimal feedback control uk under 
constraint (2.10) for arbitrary fixed U, . These controls are well known [8]. They are given below 
together with some additional relations that are necessary for the further analysis of inequalities 
(2.11), (2.13) and the choice of uk. 

3. FIRST-ORDER EQUATIONS IN TIME 

Consider the problem of time-optimal vanishing for one of Eqs (2.5) under constraint (2.10) and 
initial condition (2.8). We have 

&+Ak(lk=Uk, iukl< uk, hk>O 

qk(O) = & (Ik(Tk) = 0, Tk -+ min (3.1) 

The solution of problem (3.1) is elementary. Integrating Eq. (3.1) and satisfying the initial 
condition, we find that 

(3.2) 

Hence it follows that for the fastest vanishing of the solution qk(r) the control uk should be a 
maximum in modulus and opposite to the sign of the initial value 42, or, equivalently, of the 
solution qk (r). 

The synthesis of the time-optimal control thus has the form 

-(lksignqk# qk#' 

qk=' 
(3.3) 

The control (3.3) is constant along any phase trajectory. Substituting it into (3.2) and integrating, 
we obtain 

qk(f) = 1 1 qz I - uk xi’ [exp(Xk r, - I] 1 exp(-Xk fbiw 4: (3.4) 
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At the final instant, according to (3.1) we have qk(Tk) = 0. From (3.4) we find the instant the 
process ends 

(3.5) 

The solution of the time-optimal control problem (3.1) for all ka0 is presented in the form of 
syntheses of the optimal control (3.3). The phase trajectory and optimal time are given by formulae 
(3.4) and (3.5), respectively. 

4. SECOND-ORDER EQUATIONS IN TIME 

We will now consider the optimal control problem for one of Eqs (2.6) under constraint (2.10) 
and initial conditions (2.9). We have 

qk+&&=&, lukl6 u,, wk;10 (4.1) 

qk@)=& q~(o)~(~~)*, qk(Tk)=qi(Tk)=O, Tk+hI 

We first consider the case when wk>O, k> 1. We introduce dimensionless variables and 
parameters 

t = ($7, qk = (/kwi2Y, qk = &‘$z 

&=&u, &=.C$iT, (4.2) 

After transformations (4.2) relations (4.1) acquire the normalized form 

dy/dr=z, dz/dr=-y+u, IulG 1 

Y(0) = YO, z(0) = z”, y(T,) = ~$2’~) = 0, T, + min 
(4.3) 

The solution of the time-optimal problem (4.3) is shown [8]. The optimal control synthesis for 
problem (4.3) can be put in the form 

u(Y,z)= sign[$(Y)-21, $ZO 

U( y, Z) = sign y = -sign 2, JI = 0 (4.4) 

The function +b) is given by the equalities 

$(y)=(-y2 -2yp, -2G y< 0 

G(y)= NY +2h y< -2 (4.5) 

J/ (Y) = -N-Y), Y>O 

The switching curve z = I,@) given by the relations (4.4) and (4.5) possesses central symmetry 
and consists of semicircles of unit radii with centres at the points 

z=o, y=+(2itl), i-o,1 ,.._ (4.6) 

The plus sign in (4.6) gives semicircles in the fourth quadrant of the y, z phase plane, and the 
minus sign in the second quadrant. 

The optimal phase trajectory corres~nding to the synthesis of the control (4.4) consists of 
circular arcs with centres at the points y = f 1, z = 0. Here, in the domain z> G(y), where u = -1, 
the centre of these circles is at the point y = - 1 i z = 0, while in the domain .z< q(y), where u = 1, it 
is at the point y = 1, z = 0. The semicircles of the switching curve with centres at the points y = f 1, 
z = 0 are themselves segments of the phase trajectories. 

In Fig. 1 the solid lines give the switching curve, and the thin line is one of the optimal 
trajectories. The arrows show the direction of increasing time. 
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FIG. 1. 

We will estimate the time of motion Z’,(y, z) along the optimal phase trajectory, beginning at 
some point y, z. Suppose, to fix our ideas that this point lies in the domain z>z&‘y). We will first 
make some auxiliary constructions. 

We denote by r, 8 the polar coordinates of the initial point y, z the pole being the point y = - 1, 
z = 0. We have 

y=rcose -1, z=rsinl? (4.7) 

The initial segment of the phase trajectory is a circular arcs = const. We continue this arc in an 
anticlockwise direction until it intersects the switching curve z = $(x, y). Suppose the point of 
intersection P lies on the ith (counting from the origin of coordinates) semicircle of the switching 
curve (see Fig. 1, where i = 4). This means that the coordinate of P can be put in the form 

yp=-2i+1 +coscY, zp=sinff 

i=2,3 ,..,, af[O,rr) 
(4.8) 

The angle Q corresponds to the arc cut out by the point P from the semicircle of the switching 
curve on which it lies. We note that such arcs LY are cut out by the optimal trajectory from all the 
semicircles of the switching curve which it intersects. The final arc of the phase trajectory also has 
angular dimensions fy, see Fig. 1. 

Since the point P with coordinates (4.8) lies on a circle I = const, we have 

r;2 =(yp+1)2 tz:,=4(i-1)2 +1 -4(i- l)cosa! (4.9) 

We denote by R the length of the radius-vector of the phase point y, z. Using relation (4.7), we 
obtain 

The inequalities 

R2 =y* +z2 =(r--1)’ +2r(l -cos8) (4.10) 

R2r-l>[4(i-l)’ -4(i-l)+l]” -1=2i-4 

follow from (4.10) and (4.9). 

(4.11) 

The time of motion along any arc of the optimal trajectory can easily be seen to be equal to the 
angular length of this arc. Each arc between neighbouring switches of the control is either equal to 
7~, or (for the first and second sections) does not exceed rr, and the total number of sections is equal 
to the integer i introduced above. Hence we have T,~ri. Using inequality (4.11) we obtain the 
estimate 

T, G n{R/2 + 2) = To(R) (4.12) 

Estimate (4.12) holds for all R 2 0, but it does not imply that T, + 0 as R-+ 0. Hence we obtain yet 
another estimate for sufficiently small R. 
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Suppose i = 2, i.e. there is only one switch of the control, see Fig. 1. In this case the optimal 
trajectory consists of an arc of radius r and angular dimensions 8+ 6 and an arc of radius 1 and 
angular dimensions cr, coinciding with a segment of the switching curve. We denote by 6 the angle 
between the z axis and the ray continued from the point y = -1, z = 0 to the point of the trajectory 
where the switch occurs. Thus 

T,=8+6ta (4.13) 

where, as can be determined with the help of Fig. 1, we have 

sin6 = r-‘sina, 6 E IO, n/z1 (4.14) 

We will obtain some auxiliary relations, which we shall require in order to estimate the time 
(4.13). Putting i = 2 in (4.9), we find 

f = [l t &in2 {CuD)] vt (4.15) 

Equations (4.14) and (4.15) determine the dependence of the angle 6 on (Y. Investigation of this 
dependence shows that as the angle (Y varies between the limits in (4.8), the angle 6 varies between 
the limits [0, m/6], and 6s cy always. Thus we have 

OQ 6f n/6, 6G a!, OQ cK< ?? (4.16) 

We note the following inequality 

sin(G) a r/n, y E 10, %I (4.17) 

Putting y = cy in inequality (4.17), we obtain from (4.15) the relation 

r>(l tsn-%?)H, cwE [O,n) 

which we rewrite in the form 

r>gfE)=(l tt)“, t=8n-*(u2, EE [0,8) (4.18) 

Because g (5) is a concave function, the inequality 

[g(t) - g(O)1 t-’ 2 [g(8) -@91!8, .E E [0,81 
is satisfied in the interval under consideration. 

Substituting into the last equality the values g(0) = 1 and g(8) = 3 from (4.18), we obtain 

g(l) = (1 + Dti 21 + t/4, t E [O, 81 

which gives the possibility of simplifying relation (4.18) 

r>l t 2n-2U2, CrE [O, n) 

We now transform relation (4.10) using inequality (4.17) for y = 8. We have 

R2 = (r - 1 I2 + 4rsin2 (eel21 > (r - i j2 t w2ti2 

We substitute (4.19) into the latter inequality. We obtain 

R2 > 41r-~a~ t 4n-2e2 

From this the following two inequalities follow 

(4.19) 

R>2rY2a2, R>2~-~101 (4.20) 

We now transform equality (4.13) for T, , using inequalities (4.16) and (4.20) 

T,=@+litaG 2ar+8< 2icuf+i@tG rr[(2R)“tR/2j=Ti(R) (4.21) 

We compare estimates (4.12) and (4.21). We recall that estimate (4.21) was obtained for i = 2, 
and estimate (4.12) for all i 3 2. But according to (4. ll), for i> 3 we have R 2 2. From (4.12) and 
(4.21) it follows that To(R) s T*(R) for R 32. Consequently, for all ia we have To(R) S T'(R). 
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It has thus been established that estimate (4.21) 

T, G T’(R)=n[R/2 +(2R)“], R =(y2 +z’)’ 

holds for all y, z. 

(4.22) 

Returning to the original dimensional variables (4.2), we obtain an estimate for the optimal time 
for problem (4.1) in the form 

T&k, qk) G @’ [&2 + (2 U/+&l @‘I 

&=[6):&+(&)2]%; k=ly2,...: Ok>0 (4.23) 

Here and below the superscript zero on qk and q; has been omitted. 
We consider separately the case with the zero eigenvalue k = 0, w. = 0. In this case the optimal 

control synthesis for problem (4.1) has the form [8] 

uO(qOp 46) =uosign[ti0(40) -&I, $0 ZO 

uo(q0,4b)=Lr0sign40 &--UosigngO, J/o =o (4.24) 

+0(40)=-[2u0 140 ll”sign40, Go(O)=0 

The optimal time is given by the formula 

To&o, 40) = U,-’ !2[(~7b)~P -. Uoqoo]” - 460 1 

o= sisn[ti0(90) -9bl 

(it is given in this form in, for example, [7]). 
Applying the inequality (a + b)‘“~ 1 a I”* + 1 b 1”2 to the given relation, we obtain the estimate 

(4.25) 

We have thus obtained relations that will be necessary later in the time-optimal control problem 
(4.1) for all ka0. The optimal control synthesis &(qk, q;) for k 2 1 in dimensional variables is 
given by relations (4.4) and (4.5), in which it is necessary to substitute the transformation formulae 
(4.2). In the case when k = 0 the synthesis is given by formulae (4.24). The optimal phase trajectory 
is also well known [8]. For the optimal time, estimate (4.23) has been obtained for k3 1 and (4.25) 
for k = 0. 

5. ANALYSIS OF THE CONSTRAINTS AND CONSTRUCTION OF THE CONTROL 

The relations obtained in Sets 3 and 4 contain constants uk and constraints on the control for the 
kth mode of motion. We choose these constants so as to reduce the total time of the motion, equal 
to 

T=maxkTk, k>O or k> 1 (5.1) 

while satisfying constraints (2.11) or (2.13). The index k in (2.11), (2.13) and (5.1) takes the values 
0, 1, . . . when there is a zero eigenvalue A0 = 0 in problem (2.2) and values 1, 2, . . . when there is 
none. 

Because Tk increases monotonically as uk increases, and all the uk occur linearly with positive 
coefficients in constraints (2.11) and (2.13), it is natural to choose the uk by an equality requirement 
onalltheTk: To=Tl=.... This gives the least possible value for T (given constraints (2.11) and 
(2.13)) in (5.1). 

Following the stated proposal, for the first-order equation we put, in accordance with (3.5) 

Tk=h;‘ln(l+~kI4klrr,-‘)=T 

Here T is a constant to be determined. 
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From this we find 

v* =&t&l [exp(&T) -1 I-‘. k>O (-5.2) 

Formula(5.2) holds for all hk>O. Substituting (5.2) into inequality (2.13), we obtain 

%[exp(&T) -1 ]-‘I 4j!l @k Q u” (5.3) 

As we know, under very general assumptions the eigenvalues hk and the maxima of the 
eigenfunctions Qk increase no faster than some power of k. The moduli of the Fourier coefficients 
1 qk 1 increase less rapidly than k for any bounded initial function we(x). Hence, because of the 
presence of the exponential factor, the series on the left-hand side of inequality (5.3) converges for 
all T> 0. As T takes values from 0 to ~0, the sum of the series decreases monotonically from m to 0. 
Hence there always exists a T>O for which inequality (5.3) is satisfied. Thus the stated control 
problem for Eq. (1.1) is always solvable by the proposed method. The time T of the process can be 
chosen from the condition for satisfying inequality (5.3). 

We obtain an upper estimate for the time T using the inequality 

hk [exp(hkT) -11 -I < T-r (5.4) 

It follows from (5.3) and (5.4) that if T is chosen from the condition 

T=Qrlv’, el =x!qkl@k< m (5.5) 

then inequality (5.3) is clearly satisfied. Consequently, when the series for Qi converges the time T 
can be chosen according to the simple formula (5.5). 

We now consider Eq. (1.2) that is of second order in time. In this case, instead of formulae for 
times Tk one only has the upper estimates (4.23) and (4.25), hence the equality condition on all the 
Tk cannot be satisfied exactly. Bearing this in mind, and also to simplify the subsequent formulae, 
we propose t0 choose uk in the form 

&=c&, C>o, k=f,2 ,... 

U, =max(c, lqhl, ~~14~1)~ cl >O, c2 >O (5.6) 

Here c, cl and c2 are constants. Substituting uk from (5.6) into (4.23) we obtain 

Tk( n[(2C)-'+2H(WkC)-H], k=l,2,... 

The last inequality is not violated if all @k are replaced by wi d wk. We obtain the estimate 

T& G n[(2c)-’ + 2”(w,c)--“1 (5.7) 

When substituting expression (5.6) for U. into inequality (4.25) we shall distinguish between two 
cases. In the first case, when cl 1 qb 13 c21 qo), we obtain from (4.25) and (5.6) 

ToQ (2” +l )ci’ +2l~lq~I-~lqo(” < (2” +1 ).c;* +zc," (5.8) 

In the second case, when cl Iqbl <c2/qo/, similar estimates reduce to exactly the same result 
(5.8). We choose the constants cl and c2 so that both terms on the ~ght-hand sides of inequalities 
(5.7) and (5.8) are identical term by term, i.e. 

819a 

From this we find the required constants 

Cl =v1c. c2 =v2c 

VI =2(2y” + l)n_’ = 153; vz =2i+n-2 (5.9) 

Using (5.9), formulae (5.6) can be written in the form 

&=cpR, k>l, u. =Cmax(Vliq6i,v21qol) (5.10) 

The quantities vl and y are defined in (5.9) and do not depend on c. Because the right-hand sides 
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of inequalities (5.7) and (5.8) are identical by virtue of the choice of constants cl and c2, estimate 
(5.7) holds for all k>O. Thus in all cases we have the estimate 

TG n[(2c)-’ + 2”(o,c)-“1 (5.11) 

for the time of the control process (5.1). 
It remains to choose the constant c so that the constraint (2.11) is satisfied. Substituting (5.10) into 

(2.11) we obtain 

c< u”[Q* + max(vrlqbl, v21qol)]-’ (5.12) 

Here we have introduced the notation 

Q* = sup Q,(x), @z(x) =‘&I p&)1 
xEs2 

pk = [+I; f (&)2]“, k ;s 1 
(5.13) 

and used formulae (4.23) for the pk. Inequality (5.13) is written for the case when the zero 
eigenvalue is present. When it is not present one simply omits the last term (max) in (5.12). 

Thus a sufficient condition for the control problem to be solvable for Eq. (1.2) using the proposed 
approach is uniform boundedness of the series for &(x) from (5.13) in the domain KI. For this it is 
sufficient to require the uniform boundedness in R of the following two series 

Q3(X) = Ea,l &l I PkPk(X)f, a&) = a &I I P&x)l (5.14) 

Using the notation (Z.lZ), the boundedness condition on Q* from (5.13) can be replaced by the 
stronger condition of the convergence of the numerical series 

Qs = EPk@k < “, pk = [w;a; t (c#]” 

or the condition of the convergence of the two series 

(5.15) 

Q6=~~,lq~I~~< co, Q7=aqp& cd (5.16) 

We will sum up the results obtained. For both equations (1.1) and (1.2) the solvability conditions 
have been stated and upper limits have been given on the control process time T. 

Problem (1.1) is always solvable, and its time T can be chosen from condition (5.3) or, when the 
series Qr converges, from the simpler condition (5.5). 

Problem (1.2) is clearly solvable if one of the series convergence conditions (5.13)-(5.1(j) is 
satisfied. We have the estimate (5.11) for the time T, in which the constant c should be chosen by 
condition (5.12). Here the number Q* is determined from relations (5.13) or one of the following 
relations 

Q * =Xsig Q&)+~~pnQd-G Q’ =&5, Q* =Qs +Q-I 

according to which of the series convergence conditions (5.14)-(5.16) is satisfied. 
We remark that when the initial functions w. and rvfi tend uniformly to zero, all their Fourier 

coefficients tend to zero, and here all the series in (5.3), (5.5), (5.13)-(5.16) also tend to zero. From 
estimates (5.3), (5.11), (5.12) it follows that the process time T-s-0 for both Eqs (1.1) and (1.2). 

After determining the time T and the constant c we find Uk from relations (5.2) and (5.10) for Eqs 
(1.1) and (1.2), respectively. The coefficients uk of the required control law (2.4) are found in the 
form of a synthesis, i.e. depending on the current values qk and q\ , in Sets 3 and 4 for Eqs (1.1) and 
(1.2), respectively, see (3.3) and (4.4). Because the optimal trajectories are known for the systems 
of Sets 3 and 4, the controls obtained in the form of a synthesis can also be represented in the form 
of a program I, i.e. in the form of bang-bang functions with switches points depending on the 
intial conditions. 

Thus the control (2.4) can be represented either in the form of a programmed control for given 
initial conditions, or in the form of a synthesis, if controls uk depending on qk and qi are used. In 
the second case the control is organized in the form u = u[x’; w(., t)] for system (1.1) and in the 
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form v = u[x’; w(., t), w,(., t)] for system (1.2). The notation introduced shows that the control v at 
a point x E fi at time t is a functional of the functions w(y, t) and w,@, t) with y E R. However, here 
the dependence on the initial functions w. and ~0~ is also preserved by means of the constants Uk 
which depend on the initial data, see (5.2) and (5.10). In these formulae the constants T and c also 
depend on the initial conditions. 

The control (2.4) obtained is by construction such that all boundary and initial conditions together 
with the constraint (1.6) are satisfied automatically. This control is near to being time-optimal 
because, firstly, the controls for each subsystem are optimal, and secondly, the bounds Uk are 
chosen so that the control times for the subsystems are equal or nearly equal to one another. 

Below we consider some specific examples in which the convergence conditions for series (5.5), 
(5.15) and (5.16) are analysed. The conditions for the problems to be solvable are obtained in the 
form of requirements on the initial functions. In conclusion, some general conditions for the control 
problem to be solvable for Eq. (1.2) are given. 

6. THE ONE-DIMENSIONAL PROBLEM (n = 1, A = b) 

We first consider the heat-conduction and oscillation equations for the case of one spatial variable x. 
Equations (1.1) and (1.2) have the form 

Wt =wxx+u, wtt=wXX+V (6.1) 

The domain A is the interval [O, u] of the x axis, and its boundary consists of the two points x = 0, x = a. We 
shall consider in tandem conditions (1.3) of Dirichlet and Neumann type 

w(O)= w(u)=O, w,(O)=w&7) =o 

The eigenfunctions rpk(x) corresponding to problems (6.1) and (6.2) satisfy the equations 

(4.2) 

“k n=‘XkV)&, o< x< a (6.3) 

where the primes denote differentiation with respect to X, together with Dirichlet or Neumann conditions 

9&(0)=$?&)=0? $$@)=%$(a)=0 

The eigenvalues of problems (6.3), (6.4) are as follows: 

(6.4) 

A& = wk. W& = nkja (6.5) 

where k>l for the Dirichlet problem and k*O for the Neumann problem. The orthono~alized eigenfunc- 
tions for the Dirichlet and Neumann problems are, respectively, equal to 

$?k(x) = (2/a)‘sin(w&x), k = 1, 2. . . 

%+Q(X) =a-%, q&(x) = (2/a)‘cos(wkxb w9 

The quantities (Pk from (2.12) are bounded in this case 

@k=(2/0)‘. k > 1, a0 =a-’ (6.7) 

We shall compute the Fourier coefficients (2.8) and (2.9). assuming that the initial functions w,,(x) and 
W&X) are differentiable with respect to x a sufficient number of times and using integration by parts. With the 
help of (6.6) we obtain 

II 
4&I) = f “‘{,LF~dX = 

0 
‘$’ f [( -H’,, )cos(‘d&x)] if +~$,“~t+.+~)dX $ = 

2 ( > 
% 

zz - 
a 

Wk’ [1(--M.‘, + c&Ii* 

for the Dirichlet problem and 

(6.8) 
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for the Neumann problem. From relations (6.8) and (6.9) one can derive estimates for the Fourier coefficients 
depending, firstly, on the degree of smoothness of the initial function w. and secondly, on additional conditions 
at the boundary points x = 0 and x = a, i.e. on r. We drop the argument 0 of the function qk. Henceforth the B, 

are some positive constants and the C’ are classes of functions having continuous derivatives in the interval 
[0, a] up to order i inclusive. For the Dirichlet problem we obtain, using (6.8), 

Iqkl< B,Wk’ for lt’,, E C ’ 

lykl Q B,w~2 for W” EC”. H.,=00n r (6.10) 

IqklG f?,w-' k for I,‘” E c’x, H’” =oonr 

lqkl < B,w+ k for nj,eC4. M’, =~~~;;=OonI 

For the Neumann problem we similarly have 

1 qkf < B, CJ~’ for lb’<, E C ’ 

1 qkl 4 &‘di2 for K’O E c’* (6.11) 

lqkl < B7,iJ for W” E c-3 -w; =0 on r 

t qkt c B,wi4 for w0 E C4. M’; = 0 on I 

Obviously, estimates of the form (6.10) and (6.11) can be continued without limit. For the Fourier 
coefficients q k(O) from (2.9) we have estimates similar to (6.10) and (6.11), with wa replaced by wd). 

Turning to the investigation of the convergence of the series in (5.5) and (5.6), we note that according to 
(6.7) the quantities @‘k are independent of k. Using also relation (6.5), we obtain the following convergence 
conditions for the series. 

Series (5.5) for the Dirichlet problem converges under the conditions 

wg E cz, w. =0 on I 

and for the Neumann problem under the condition 

W,EC’ 

The series (5.16) for the Dirichlet problem converges under the conditions 

(6.12) 

(6.13) 

Wg EC’. “to E cs. IZ’” = wtO ='o on r (6.14) 

and for the Neumann problem under the conditions 

wg EC”, WtoECZ* it~,~/an = 0 on I (6.15) 

We note that convergence conditions (6.12) and (6.14) for series (5.5) and (5.16) for the Dirichlet problem 
include, as well as smoothness requirements, Dirichlet conditions on the initial functions ~0 and wro. Generally 
speaking, such conditions are not necessary in the statement of initial-boundary-value problems, and they are 
an additional imposition. In the case of the Neumann problem, however, conditions (6.13) and (6.15) are less 
restrictive: for series (5.5) no conditions other than smoothness are imposed, while for series (5.16) the 
Neumann condition is only imposed on the initial function w. (and not on the function We). 

We recall that the control problem for the first equation of (6.1) (the heat conduction equation) is always 
solvable, and conditions (6.12) and (6.13) ensuring the convergence of series (5.5) are there only to apply the 
simple estimate of the control process time in (5.5). For the second equation of (6.1) (the vibrating string 
equation) conditions (6.14) and (6.15) are sufficient conditions for the control problem to be solvable by the 
proposed methods. 

7. CONTROL OF BEAM OSCILLATIONS (n = 1, A = A*) 

As an example of a fourth-order equation we consider the control of transverse oscillations of an elastic 
beam. Equation (1.2) in this case has the form 

Wit = -WXXXX + ” (7.1) 
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To fix our ideas we will restrict ourselves to hinged support boundary conditions at both ends of a beam of 
length a, i.e. 

w=wx* =0 on I, r= {x=0, x=01 (7.2) 

The eigenvalue problem (2.1) for system (7.1), (7.2) has the form 

IV 
cp = Alp, XE n = [O,a], Ip=/=Oon r (7.3) 

It is well known that the eigenvalues of problem (7.3) are positive and are 

hk = w;, w,=(kn/a)‘, k=1,2,... (7.4) 

where the wk are interpreted as the frequencies of the natural oscillations of the beam. The corresponding 
eigenfunctions of problem (7.3) can be represented in the form of equalities (6.6). Hence estimates (6.7), (6.8) 
and (6.10) remain valid for the problem under consideration, but throughout (6.6), (6.8) and (6.10) the 
frequencies wk are now defined by formulae (7.4) [instead of (6.5)]. Using the given estimates, we obtain like 
(6.14), the following sufficient conditions for series (5.16) to converge in the problem under consideration: 

w, ECZ, WtuEC’, w0 =0 on I (7.5) 

Conditions (7.5) include only one of the two boundary conditions (7.2) on I. They are less restrictive than 
(6.14) and are certainly satisfied under those restrictions which are normally imposed on the initial functions in 
the beam oscillation problem. 

8. THE TWO-DIMENSIONAL AND THREE-DIMENSIONAL PROBLEMS (n = 2, 3; A = A) 

We now consider the equations 

Wt=Aw+u, wtf=Aw+u; n=2,3 (8.1) 

in the two-dimensional and three-dimensional cases. Syppose the domain R is a rectangle when n = 2 and a 
rectangular parallelepiped when n = 3, i.e. specified by 

SL: O< xi< ai; i=l,..., n; n=2,3 (8.2) 

The solutions of the eigenvalue problem (2.2) for Eqs (8.1) in domains (8.2) under Neumann and Dirichlet 
conditions are known and are obtained by separation of variables. In the two-dimensional (n = 2) Dirichlet 
case we obtain, like (6.5) and (6.6) 

hik=w~~=n’[(i/u,)‘+(k/u,)‘]; i,k=1,2,... 
(8.3) 

~i&(xr~x~)=2(a~u~) %n(Gx, /u,)sin(nkx, /ul) 

For the Neumann problem the eigenvalues are given by relations (8.3) for i, k = 0, 1, . . , while the 
eigenfunctions have a form similar to (6.6) 

Ipik(xip x1) =2(0,0~)-YiCoS(niY,/~,)COS(nkx,/o,) 

‘Ppoo(x,~x1)=(~,~1) 
4 

(8.4) 

qok = 2+$7,~r,)-%~(nkx, jar,) 

pi0 = 2&7, )-” cos(nix,/u,); i.k = 1,2,. . . 

By (8.3) and (8.4) the quantities (2.12) are bounded 

Oik=2(~,~1)-‘: i,k= 1.2,. . . (8.5) 

We will now estimate the Fourier coefficients (2.8) and (2.9), assuming that the initial functions wa and wIo 
are sufficiently smooth. Replacing the multiple integrals over the domain R by repeated integration over x1, .x2, 
and then using integration by parts, we obtain, like (6.8)-(6.11), the following estimates 

I4ikl < B,(ik)-’ for h’O E c(l) 

1 qik 1 < B2 (ik)-’ for w0 E c(2), w0 = 0 0n r (8.6) 
lqikl C B,(ik)-3 VOT hsO E d3). wsO =o on r 

for the Dirichlet problem and 
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lqjkl G B.W-‘. lqOkl c B,k-’ 

I 4jOl < B,i_’ for w. E c(l) 
lqikl 4 B,(k)-‘, lqOkl =zi B,k- (8.7) 

I qio I < Boie2 for ‘IO0 E c(2) 

lqikl< B,,W-3. lqOkl< B,,k-” 

1 qiol < B,2i‘3 for wO E Cc3), ah-,/an = 0 on I 

for the Neumann problem. In (8.6) and (8.7) i, k = 1,2, . , everywhere, while C @) is the class of functions w 
having continuous partial derivatives of the form 

aP+qiaxfaxp, 0~ pi r, 0~ q G , (8.8) 
in the closed domain R. 

For the Fourier coefficients q:k(O) from (2.9) there are estimates similar to (8.6) and (8.7), with we replaced 

by w,o. 
Using relations (8.3), (8.5)-(8.7) we obtain the required sufficient conditions for series (5.5) and (5.16) to 

converge. In the cases considered here summation in these series is performed over two indices i and k, from 1 
to m for the Dirichlet problem and from 0 to 03 for the Neumann problem. 

It turns out that series (5.5) converges for the Dirichlet problem under the conditions 

wg E c(2), w,=Oon I (8.9) 

and for the Neumann problem under the condition 

w. E c(2) (8.10) 

Series (5.16) converge for the Dirichlet problem under the conditions 

w,ECt3), wtnECfz), w. =wto=O on I (8.11) 

and for the Neumann problem under the conditions 

wg E c(3), Wru E cf2), aw,/an =0 on I (8.12) 

The convergence conditions (8.9)-(8.12) are completely analogous to the corresponding conditions 

(6.12)-(6.15) for the one-dimensional problem. 
In the three-dimensional case (n = 3), which is completely analogous to the two-dimensional one, the 

eigenvalues are given by equalities similar to (8.3) 

A3;k = A’ [(i/a, )’ + (i/U, 1’ + (k/a, )’ 1 

Here i, j, k > 1 for the Dirichlet problem and i, j, k 2 0 for the Neumann problem. 
Formulae and estimates similar to (8.3)-(8.5) hold for the eigenfunctions and Fourier coefficients. Finally, 

we arrive at exactly the same convergence conditions (8.9)-(8.12) as in the two-dimensional case. Here, as in 
(8.8), dr) is the class of functions w having continuous partial derivatives of the form 

aP+q+s&a,~ax~, 0 C p < I, 0 < q 4 I, 0 < s G r 

in the closed domain fl 

9. THE SOLUBILITY CONDITIONS IN THE GENERAL CASE 

As was pointed out in Sec. 5, no additional conditions are required for the control problem to be 

solvable for Eq. (1. l), while for the control of (1.2) it is sufficient, for example, that the functions 

Q3(x) and Q~(x) f rom (5.14) be uniformly bounded in CR. We shall analyse these conditions. 

Below we shall always assume sufficient smoothness of the coefficients of the operators of A from 
(1.2) and M from (1.3)) and also of the boundaries r and initial functions w. and wIo from (1.5). 

We note that the series (5.14) contain, firstly, eigenfunctions (Pk(X) of problem (2.2), and 

secondly, Fourier coefficients qk and qok of the initial functions w. and wfl. It is therefore desirable 
to use the following estimates for the series (5.14), which follow from the Cauchy inequality and 
enable us to separate the contributions of the eigenfunctions and Fourier coefficients 

QJ(X) G [ m&Y~(x) * n;+pq:]” 

Q‘,(x) G [C P&; (x) .X Xl(qi,)’ 1” 
(9.1) 
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Here p and y are currently arbitrary numbers, which will be chosen later so that all the series in 
(9.1) are bounded. 

We shall consider fractional (positive and negative) powers of the differential operator A. An 
operator A of order 2m defines a transformation Aw = f. Its domain of definition DA is the class of 
functions w defined in the domain fi having square-integrable partial derivatives up to order 2m 
inclusive (this fact can be expressed in the form DA C Hzm(fl), where Hz,, is the corresponding 
Sobolev space), and also satisfying boundary conditions (1.3). 

According to Agmon’s kernel theorem [9], for 2ms > a the operator ApS is an integral operator 
with a continuous kernel equal to 

K(x*_Y)= ~GS$%(X)cPk(Y) 

Putting x = y, i.e. considering the kernel on the diagonal, we obtain the uniform boundedness of 
the series 

Z1hkS&(x)G const < 00, 2ms > n 

It follows from this that for uniform boundedness of the first factors on the right-hand sides of 
(9.1), i.e. the series depending on x, it is sufficient that 

P > n(2m)-‘ , 7 > n(2m)-’ (9.2) 

We remark that conditions (9.2) for m = 1 were first given by Il’in [lo]. 
The second factors in the right-hand sides of (9.1) ( series depending on the Fourier coefficients) 

can, by Parseval’s equality, be represented in the form 

CA;+@& = p(1+p)‘2w&x 
(9.3) 

zh;(q,)* = I(Ay’2wto)*dx 
n 

Series (9.3) converge if the functions A(1+p)‘2 w. and A y’2 wa are square integrable in the domain 
R, i.e. belong to the class L2(n). In other words, the functions w. and wIo should belong to the 
domains of definition of the corresponding operator, i.e. 

w. ED A(1+p)/2’ wro EDA7i2 (9.4) 

It follows from Seeley’s work [ll] that the domain of definition DA’ for s E (0, 1) lies in Hzms(R) 
and is distinguished by those boundary conditions (1.3) whose order ordMj = rj< r = 2ms - Y2. In 
the case when for some j we have rj = r, the corresponding boundary condition is to be understood 
in some integral sense. 

From (9.4) we have, in the case under consideration 

s=(l +@)/2, r=m(l+P) --l/L for w. 

s = Y/2, r=my-*% for wrO 
(9.5) 

where s can also be greater than unity. 
Suppose, for example, s = 1 + (+, where aE (0, 1). Then, representing the result of the action of 

the operator A” in the form A”w = A”(Aw) and applying Seeley’s theorem, we arrive at the 
following assertion. The domain of definition D,+ lies in Hznts (a) and is distinguished by boundary 
conditions (1.3) and also those boundary conditions MjAw = 0 for which ordMj< 2mo- l/2. In 
other words, for s E (1,2), as well as the boundary conditions (1.3), conditions of the form 
MjAw = 0 for which ord (MjA) < r = 2ms - !h are also imposed on the function w. 

Similar results also follow from lemmas derived in Appendix 2 of [12]. 
Thus, for the convergence of series (9.3) the functions w. and wn, should satisfy conditions 

depending on parameters s and r, the stringency of these conditions increasing with s and r. We note 
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TABLE 1 

n. fn v’(w0) ” * (Wro) r*(w0) ‘*(WtO) 
I I I I 

1.1 312 112 1 0 
1.2 512 1 I2 2 0 
2.1 2 1 1 0 
292 3 1 2 0 
3.1 512 312 2 1 
3.2 712 312 3 I 

that for restrictions rj<r on operator orders the rj are whole numbers, hence the fractional part of r 
is not significant. 

We determine two numbers for each of the functions w0 and w@ with the help of relations (9.2) 
and (9.5): the lower bound s” on the possible values of s and the integer part r* of the lower bound 
on possible values of r. The values of Y* = 2ms* and Y* for various pairs IZ, m for IZ d 3, m 6 2 are 
shown in Table 1. 

Using the values of Y* and r* obtained one can answer the question of the convergence of series 
(9.1) and thereby obtain sufficient conditions for the control problems under consideration to be 
solvable. 

For this it is sufficient to require that the following conditions be satisfied. 
Firstly, the functions w. and wfl should belong to classes H,(R), where v is any number greater 

than the corresponding v*. In particular, v can be chosen to be an integer, and this requirement will 
then indicate the existence for the functions w. and wfi of square-integrable partial derivatives up to 
order v inclusive. 

Secondly, the functions w0 and wro should satisfy those boundary conditions (9.2) on r for which 
ordMj<r*, and those of the boundary conditions MjAw = 0 for which ord(MjA) dr*. Because 
ord Mj < ordA = 2m, the imposition of the conditions MIA W = 0 is only required when r* 2 2m. 

It is clear from Table 1 that the inequaIity r * 82m only holds when n = 3, rn = 1 for the function 
wO. In this case for the Dirichlet problem (ord M = 0) we have ordMA = 2 = r* (wo), and it is 
necessary to impose on w0 the additional condition Aw = 0 on l?. In the case of the Neumann 
problem (ordM = 1) for y1 = 3, m = 1, and also for all problems with other values of ~1, m, 
additional conditions do not appear. 

The appearance of an additional boundary condition can be explained as follows. The proposed 
control law (2.4) vanishes on r in the case of the Dirichlet problem because here (Pi = 0 on I?. This 
reduces the possibility of control on the boundary of the domain, and can require additional 
conditions on the initial functions on r. 

At the same time some of the boundary conditions (1.3) for the problem to be solvable need not 
be applied. For example, for n = 2, m = 1 we have r* (wO) = 1, r* (wa) = 0. Consequently, for a 
second-order operator A in the case of the Dirichlet problem (ord M = 0) the functions wg and wto 
should satisfy the Dirichlet condition, while in the case of the Neumann problem (ordM = 1) the 
function w0 should satisfy the Neumann condition, while the function wfi) need not satisfy it. 

Comparing the data in the table with the results of the examples in Sees 6-8, we see that in the 
examples the convergence conditions turned out to be less restrictive for n = 1, m = 2 and n = 3, 
m = 1. For n = 1,‘m = 2 in the example it is not required to impose the condition wz = 0 on lY, which 
figures in the table: r* (wo) = 2. For n = 3, m = 1 in the Neumann problem example the condition 
~~~/~~ = 0 is not required, while for the Dirichlet problem the condition is Awe = 0 on r, as follows 
from Table 1. 

The author expresses his deep thanks to M. S. Agranovich, V. A. Il’in, A. I. Ovseyevich and A. 
S. Shamayev for valuable advice and discussions. 
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